
J. Fluid Mech. (1999), vol. 386, pp. 77–104. Printed in the United Kingdom

c© 1999 Cambridge University Press

77

Temporal behaviour of a solute cloud in
a chemically heterogeneous porous medium

By S. A T T I N G E R1,2, M. D E N T Z 1, H. K I N Z E L B A C H1

AND W. K I N Z E L B A C H2

1Institut für theoretische Physik, Universität Heidelberg, Philosophenweg 19,
D-69120 Heidelberg, Germany

2Institut für Hydromechanik und Wasserwirtschaft, Eidgenössische Technische Hochschule Zürich,
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In this paper we investigate the temporal behaviour of a solute cloud in a hetero-
geneous porous medium using a stochastic modelling approach. The behaviour of
the plume evolving from a point-like instantaneous injection is characterized by
the velocity of its centre-of-mass and by its dispersion as a function of time. In
a stochastic approach, these quantities are expressed as appropriate averages over
the ensemble of all possible realizations of the medium. We develop a general
perturbation approach which allows one to calculate the various quantities in a
systematic and unified way. We demonstrate this approach on a simplified aquifer
model where only the retardation factor R(x) due to linear instantaneous chemical
adsorption varies stochastically in space. We analyse the resulting centre-of-mass
velocity and two conceptually different definitions for the dispersion coefficient: the
‘effective’ dispersion coefficient which is derived from the average over the centred
second moments of the spatial concentration distributions in every realization, and
the ‘ensemble’ dispersion coefficient which follows from the second moment of the
averaged concentration distribution. The first quantity characterizes the dispersion
in a typical realization of the medium as a function of time, whereas the second
one describes the (formal) dispersion properties of the ensemble as a whole. We
show that for finite times the two quantities are not equivalent whereas they become
identical for t→∞ and spatial dimensions d > 2. The ensemble dispersion coefficient
which is usually evaluated in the literature considerably overestimates the dispersion
typically found in one given realization of the medium. We derive for the first time
explicit analytical expressions for both quantities as functions of time. From these, we
identify two relevant time scales separating regimes of qualitatively and quantitatively
different temporal behaviour: the shorter of the two scales is set by the advective
transport of the solute cloud over one disorder correlation length, whereas the second,
much larger one, is related to the dispersive spreading over the same distance. Only
for times much larger than this second scale, and spatial dimensions d > 2, do the
effective and the ensemble dispersion coefficients become equivalent due to mixing
caused by the local transversal dispersion. Finally, the formalism is generalized to an
extended source. With growing source size the convergence of the effective dispersion
coefficient to the ensemble dispersion coefficient happens faster as the extended source
already represents an ensemble of point sources. In the limit of a very large source
size, convergence occurs on the time scale of advective transport over one disorder
length. We derive explicit results for the temporal behaviour in the different time
regimes for both point and extended sources.
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1. Introduction

Flow and transport in porous media with spatial heterogeneities is investigated
extensively in the literature. An example with many practically relevant implications
is the transport of dissolved pollutants in the porous formations of a water-saturated
aquifer. Owing to the inhomogeneities in the local flow field and to strong spatial vari-
ations of various chemical and physical system parameters, the large-scale transport
properties generally are very different from those found from experiments performed
on the laboratory scale. It is well established in the literature that the transport
parameters characteristic of the behaviour at the field scale are dominated by the
structure of the given inhomogeneities of the medium, but owing to the lack of
knowledge of the detailed local structure of the soil in a given realistic setup, our
predictive abilities are limited. The stochastic approach has become an invaluable
tool to describe transport properties in such situations. Starting from a statistical
description of the system behaviour on a local scale with a fixed time-independent
structure of the inhomogeneities, the objective of the method is to derive appropriate
effective quantities characteristic of the system on length and time scales larger than
the laboratory scales.

The stochastic approach is well known in solid state physics and fluid mechanics
where it is used to model systems with ‘quenched disorder’, see e.g. the reviews
by Haus & Kehr (1987) and Bouchaud & Georges (1990). As mentioned above,
the stochastic approach has also been successfully applied to various problems in
groundwater hydrology. Examples can be found in the textbooks by Dagan (1989)
and Gelhar (1993). The problems investigated in the present article are related to the
latter context. In the generally accepted model for a heterogeneous saturated aquifer,
spatial fluctuations in the hydraulic conductivity induce local random variations in the
advective flow field which in turn cause a strong increase in the field-scale dispersion
of a transported solute. Taking into account linear equilibrium adsorption reactions
yields a retardation in transport. The influence of spatial stochastic variations in
the corresponding retardation factor on the field-scale dispersion coefficient is well
established in the literature, see again the discussion by Dagan (1989) and Gelhar
(1993) and the references given therein. In a stochastic approach, these heterogeneities
are modelled as stochastic, time-independent random fields. Characteristic field-scale
transport properties then follow as appropriately defined averages over the ensemble
of all possible aquifer realizations. For the case of a saturated aquifer, Gelhar &
Axness (1983) followed this approach to investigate the increase of macroscopic
dispersion coefficients due to spatial fluctuations in the hydraulic conductivities.
Their approach has been generalized by many authors to include various effects of
heterogeneities in chemical properties such as the equilibrium adsorption isotherm.
A more detailed discussion of the literature is postponed to § 3.3. The properties
derived by these methods describe the transport processes on asymptotically large
scales. However, these methods give little information on the time scales necessary
to reach this asymptotic situation. Knowledge of the transient temporal behaviour
and the basic time scales involved, on the other hand, is of fundamental relevance
for an adequate interpretation of field measurements and numerical simulations. The
temporal behaviour of transport coefficients in a medium with spatial fluctuations in
the conductivities was investigated by Dagan (1984, 1988, 1991) using a Lagrangian
approach. This analysis neglects the influence of local dispersion on the transport of
the solute. Dagan’s results are therefore restricted to short time scales or to situations
where the initial spatial extent of the solute plume is sufficiently large to sample the



Temporal behaviour of a solute cloud in a heterogeneous porous medium 79

medium from the beginning. Again the approach has been generalized to include
other kinds of heterogeneities, see the discussion in § 3.3.

2. General concepts
In a given aquifer, the solute cloud is represented by a concentration field c(x, t). Its

centre-of-mass velocity uj(t) and dispersion coefficient are given by time derivatives
of the spatial moments,

uj(t) =
d

dt
m

(1)
j (t), (2.1)

Dij(t) =
1

2

d

dt
{m(2)

ij (t)− m(1)
i (t)m(1)

j (t)}, (2.2)

where m(1)
j (t), m(2)

ij (t) are the first two moments of the properly normalized spatial
concentration distribution in d dimensions,

m
(1)
j (t) =

∫
ddx xj p(x, t), (2.3)

m
(2)
ij (t) =

∫
ddx xi xj p(x, t), (2.4)

with a density p(x, t) given by

p(x, t) =
c(x, t)∫

ddy c(y, t)

. (2.5)

The time evolution of the centre-of-mass velocity uj(t) and the dispersion coeffi-
cient Dij(t) defined in this way depend implicitly on the spatial distribution of the
heterogeneities in the given aquifer. In the stochastic modelling approach, the given
heterogeneous medium is identified as one particular typical realization of a spatial
stochastic process. The basic assumption of the approach is that the transport co-
efficients can be expressed as averages over the ensemble of all possible aquifer
realizations. By construction, such averages first of all represent properties charac-
teristic of the whole ensemble of all possible aquifer realizations. At first glance,
therefore, the stochastic approach might seem to be of limited value to predict trans-
port properties for a single given aquifer. The reason that the stochastic method also
has predictive power for the individual aquifer lies in the fact that for appropriate
quantities the fluctuations from realization to realization become small after the
solute cloud has sampled a sufficiently large representative part of the given medium.
Quantities with this property are called ‘self-averaging’. The characteristic transport
properties found in different realizations of the medium in this case fluctuate only
weakly around the ensemble averages constructed in the stochastic approach, so the
latter indeed represent the ‘effective’ values typically found at large scales in a given
heterogeneous medium.

The stochastic approach starts from quantities observable in a given realization of
the medium and tries to evaluate the corresponding ensemble averages. In the present
paper, we investigate the temporal behaviour of the centre-of-mass velocity and the
dispersion coefficient. With respect to one single aquifer, these quantities are defined
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by equations (2.1) and (2.2). The corresponding averages are

ueff
j (t) ≡ uj(t) =

d

dt
m

(1)
j (t), (2.6)

Deff
ij (t) ≡ Dij(t) =

1

2

d

dt
{m(2)

ij (t)− m(1)
i (t)m(1)

j (t)}, (2.7)

where the overbar denotes the ensemble averaging procedure. The effective dispersion
coefficient given by (2.7) is different from a quantity we call the ‘ensemble dispersion
coefficient’ Dens

ij which reflects the dispersion characteristic of the whole ensemble of
aquifer realizations. It is defined by

Dens
ij (t) ≡ 1

2

d

dt
{m(2)

ij (t)− m(1)
i (t) m(1)

j (t)}. (2.8)

The ensemble dispersion coefficient takes into account an artificial dispersion effect
caused by fluctuations of the centre-of-mass positions of the solute clouds in different
realizations of the inhomogeneous medium. This effect is suppressed in the effective
dispersion coefficient Deff as defined in (2.7), because there the centre-of-mass positions
are removed before the ensemble average is performed. Generally, the experimentally
observable dispersion, which is a property related to a given aquifer, is represented
by the effective quantity Deff

ij (t), equation (2.7). The conceptual difference between the
two quantities has been well known in the literature for quite some time, see e.g.
the discussion by Batchelor (1949, 1952) for the case of diffusion in turbulent flows.
The corresponding definitions for static random flow fields are investigated e.g. by
Rajaram & Gelhar (1993), Dagan (1990, 1991), and Kitanidis (1988).

In the literature it is often assumed that the difference between the two quantities
vanishes as soon as the solute cloud has been transported over a length larger than the
intrinsic correlation length of the heterogeneities. (It should, however, be mentioned
that alternative views exist, such as in Kitanidis (1992) and Kapoor & Kitanidis
(1996)). Therefore, usually the mathematically much simpler ensemble quantity Dens

is evaluated, see e.g. Kabala & Sposito (1991), Naff (1990), Shvidler (1993), Fiori
(1996). For the general model of a medium with spatial fluctuations in the hydraulic
conductivity as well as in the retardation factor, Bellin et al. (1993) generalized
the Lagrangian method of Dagan (1984) to calculate the temporal behaviour of the
ensemble quantity Dens(t). More recently, Miralles-Wilhelm & Gelhar (1996) addressed
the same question. The perturbation method they use again yields an approximation
for the time behaviour of the ensemble dispersion coefficient Dens(t).

As discussed above, a priori, one does not expect that ensemble quantities give
a realistic estimate for the situation found in one typical realization of the aquifer.
For comparison with an experimental situation, one should use the effective quantity
Deff
ij (t). In § 4, we show that for a point source at finite times for all dimensions d,

the two quantities Deff
ij (t) and Dens

ij (t) are different not only conceptually, but also
quantitatively. In § 5 we discuss the effect of an initial condition of finite extension
and show that with growing initial size of the source there is a transition to the
generally assumed equivalence of the two quantities also for finite times.

3. The general model
3.1. Basic definitions

On mesoscopic (i.e. laboratory) scales, the time evolution of a (mobile) solute in a
homogeneous porous medium with instantaneous chemical adsorption is given by an
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advection–dispersion equation, see e.g. Dagan (1989) or Gelhar (1993),

∂

∂t
(n c(x, t) + (1− n) cads(x, t)) + ∇ · (u0 c(x, t))− ∇ · D0 · ∇c(x, t) = 0, (3.1)

where c(x, t) and cads(x, t) are the spatial concentrations of the mobile and the
adsorbed solute, respectively. Both concentrations are normalized with respect to the
total volume of a representative volume element. The ratio between the accessible pore
volume and the total volume of the medium is given by the effective porosity n. Here
and in the following, we denote vector and tensor quantities by boldface characters.
The vector u0 is the specific discharge (or ‘Darcy-velocity’) of the groundwater. It
follows from the local permeability of the medium by Darcy’s law, see e.g. Dagan
(1989) or Gelhar (1993). The tensor D0 is the local bulk dispersion coefficient. Up
to microscopically small corrections, it is proportional to the Darcy velocity. For a
medium with linear chemical adsorption, the mobile and the adsorbed concentration
are related by c(x, t) = kd cads(x, t) with a positive distribution coefficient kd.

On larger scales, the various coefficients of the model become spatially inhomoge-
neous, and the basic equation for the time evolution of a mobile solute in a medium
with linear instantaneous chemical adsorption now reads

R(x)
∂

∂t
c(x, t) + ∇ · (u0(x) c(x, t)) + ∇ · D0 · ∇c(x, t) = ρ(x)δ(t). (3.2)

Owing to spatial fluctuations in the permeability of the porous medium, the Darcy
velocity u0(x) varies locally. As a consequence of the incompressibility of the fluid,
however, one still has ∇ · u0(x) = 0. We introduced the space-dependent retardation
factor R(x) ≡ n(x)+(1−n(x)) kd(x) > 0 which reflects spatial inhomogeneities in both
the local porosity and the local chemical adsorption coefficient. In principle, the local
dispersion tensor also varies spatially, D0 = D0(x). However, as is well known in the
literature, see e.g. Gelhar (1993), the related effects are negligible. In the following,
we therefore assume a constant local dispersion tensor. The additional temporal
δ-function multiplied with the source term ρ(x) on the right-hand side represents
the initial condition for an instantaneous solute injection at t = 0. For the mobile
concentration, it implies c(x, 0) = R(0)−1ρ(x). As boundary condition we assume a
vanishing concentration at infinity.

In the stochastic approach, the particular spatial distribution of u0(x) and R(x) in
the given system is interpreted as one single realization of a spatial stochastic process
defined by the ensemble of all possible realizations. We assume this process to be
ergodic, which essentially means that spatial averages can be replaced by ensemble
averages. Furthermore, we assume the processes to be translation invariant in space,
which in particular implies that the ensemble averages R(x) and u0(x) do not depend
on the given position x in space. We split the spatially fluctuating fields into a
deterministic and a random contribution,

R(x) ≡ R (1− µ(x)) and u0(x) ≡ R (u− u′(x)
)
, (3.3)

where R ≡ R(x) > 1 is the averaged retardation factor and u the ensemble-averaged
flow velocity, normalized by R for later convenience. The fields µ(x) and u′(x) denote
the normalized random fluctuation around these mean values. By construction, one
has µ(x) = 0 and u′(x) = 0. The corresponding auto-correlation functions are denoted
by

µ(x) µ(x′) = Cµµ(x− x′) and u′i(x) u′j(x′) = Cuu
ij (x− x′), (3.4)

where u′i(x) is the i-component of the d-dimensional field u′(x), i = 1, . . . , d.
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Analogously, the cross-correlation functions read

µ(x) u′i(x′) = Cµu
i (x− x′). (3.5)

Owing to the translational invariance in space, the two-point correlation functions
are functions of the distance x − x′ only. Their particular shape is to some extent
arbitrary. They have to fulfil some general mathematical requirements to make the
whole approach well defined; details are summarized e.g. in Gelhar (1993). Reflecting
the situation in the heterogeneous medium, they should drop sharply to zero on
length scales larger than an intrinsic correlation length given by the typical scale of
the inhomogeneities in the medium. Note that in the framework of a second-order
perturbation treatment, the transport coefficients are completely determined by the
mean values R, u, and the two-point correlation functions. To the given order, further
details on the probability distribution of R(x) and u0(x) do not affect the transport
coefficients.

If we rescale the remaining quantities in the transport equation according to

D ≡ D0/R, g(x, t) ≡ R c(x, t), (3.6)

equation (3.2) reads

∂

∂t
g(x, t) + u · ∇ g(x, t) +∇ · D · ∇ g(x, t) = ρ(x)δ(t) +µ(x)

∂

∂t
g(x, t) + u′(x) · ∇ g(x, t).

(3.7)

The (rescaled) initial condition generated by the source term on the right-hand side
now reads g(x, 0) = R(0)−1Rρ(x). Without restriction of generality the mean flow
vector u is aligned with the 1-direction of the coordinate system,

u = u e1 (3.8)

where e1 is the unit vector in 1-direction, i.e. ui = u δi1 in component notation. For
simplicity, and without severe restriction of generality, the local dispersion tensor D
is assumed to be of diagonal form with a longitudinal component DL and transversal
components DT , i.e.

Dij =

 DT for i = j = 1
DL for i = j > 1
0 for i 6= j.

(3.9)

For the purposes of the present paper, it has some technical advantages to perform
a Fourier transform with respect to the spatial variable x,

g̃(k, t) =

∫
ddx g(x, t) exp (+ik · x) and g(x, t) =

∫
k

g̃(k, t) exp (−ik · x) (3.10)

where k and x are d-dimensional vectors and k · x denotes the corresponding
scalar product. The Fourier-transformed functions are marked by a tilde. For the
d-dimensional k-integration over the whole space here and in the following we em-
ploy the shorthand notation ∫

k

. . . ≡
∫

dd k

(2π)d
. . . . (3.11)

The transport equation (3.7) then reads

∂

∂t
g̃(k, t) + (−ik · u+ k · D · k) g̃(k, t) = δ(t) ρ̃(k) +

∫
k′
L′(k, k′; t) g̃(k − k′, t) (3.12)
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with ρ̃(k) =
∫

ddx ρ(x) exp (+ik·x). We used the incompressibility condition k·ũ′(k) = 0
to write the operator L′(k, k′; t) as

L′(k, k′; t) ≡ µ(k′)
∂

∂t
+ ik · ũ′(k′). (3.13)

From the definitions of the centre-of-mass velocity and the dispersion coefficient in
one single realization as given by equation (2.1) and (2.2), one gets

uj(t) =
d

dt
(−i∂kj ) {ln p̃(k, t)}|k=0, (3.14)

Dij(t) =
1

2

d

dt
(−i∂ki) (−i∂kj ){ln p̃(k, t)}|k=0, (3.15)

where ∂ki denotes the partial derivative with respect to the k-component in the
i-direction, and the Fourier transform p̃(k, t) of the normalized concentration distri-
butions (2.5) is given by

p̃(k, t) = g̃(k, t)/g̃(k = 0, t). (3.16)

The ensemble-averaged quantities defined by (2.6), (2.7), and (2.8) now read

ueff
j (t) =

d

dt
(−i∂kj ) {ln p̃(k, t)}|k=0, (3.17)

Deff
ij (t) =

1

2

d

dt
(−i∂ki)(−i∂kj ){ln p̃(k, t)}|k=0, (3.18)

Dens
ij (t) =

1

2

d

dt
(−i∂ki) (−i∂kj ) ln{p̃(k, t)}|k=0. (3.19)

Note again the difference in the definitions for the effective and the ensemble quanti-
ties. For the first two, one has to average the logarithm of the distribution p̃, whereas
for the last, one first averages the distribution, and then takes the logarithm.

3.2. Perturbation theory

Generally, there are no closed solutions of the transport equation for given arbitrary
functions µ(x), u′(x). We construct approximate solutions for the transport coefficients
using a perturbation expansion with respect to these stochastic fields. One possible
way to do this is to transform the transport equation into an equivalent integral
equation. By iteration, the latter generates a series expansion which in our case is
truncated after the second-order contributions.

In Fourier space this approach reads as follows. The Fourier-transformed transport
equation (3.12) is rewritten as an integral equation,

g̃(k, t) = g̃0(k, t) ρ̃(k) +

∫ ∞
−∞

dt′ g̃0(k, t− t′)
∫
k′
L′(k, k′; t′) g̃(k − k′, t′). (3.20)

The function g̃0(k, t) solves the ‘unperturbed’ equation for the case of a point-like
injection (i.e. (3.12) with ρ̃(k) = 1 and L′ ≡ 0),

g̃0(k, t) = Θ(t) exp {− (k · D · k − iu · k) t} (3.21)

where Θ(t) is the Heaviside step function, u and k are d-dimensional vectors and
the local dispersion coefficient D in the most general case is a d-dimensional matrix.
Equation (3.20) is an implicit equation for g(k, t). By iteration one generates a
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perturbation series in L′ (i.e. in µ and u′),

g̃(k, t) = g̃0(k, t) ρ̃(k) +

∫
k′

∫
dt′ g̃0(k, t− t′)L′(k, k′; t′) g̃0(k − k′; t′) ρ̃(k − k′)

+

∫
k′k′′

∫
dt′dt′′ g̃0(k, t− t′)L′(k, k′; t′) g̃0(k − k′, t′ − t′′)

×L′(k − k′, k′′; t′′) g̃0(k − k′ − k′′, t′′) ρ̃(k − k′ − k′′) + · · · . (3.22)

This series, truncated after the second order in L′, constitutes the basis of the
perturbational treatment of the transport parameters. It defines a series expansion
with respect to the strength of the fluctuation operator L′.

3.3. Disorder-induced contributions to the transport coefficients

To calculate transport parameters such as the effective velocity ueff
j (t), the effective

dispersion coefficient Deff
ij (t), and the ensemble dispersion coefficient Dens

ij (t), one inserts
the perturbation series (3.22) into the corresponding definitions (3.17) to (3.19), and
expands the resulting expressions again consistently up to second order in L′. Fi-
nally, one performs the appropriate ensemble averages using the disorder correlation
functions (3.4) and (3.5). One ends up with explicit integral expressions for the quan-
tities under consideration. All contributions linear in L′ drop out after performing
the averages since the random fields involved have zero mean by construction. So to
second-order perturbation theory, the resulting expression for some arbitrary quantity
X is of the form X = Xlocal + δµµ{X}+ δuu{X}+ δµu{X}, where Xlocal is the local (or
laboratory scale) value of the quantity which follows from the transport equation if
all spatial fluctuations are suppressed. The non-vanishing second-order contributions
denoted by δµµ{X}, δuu{X}, and δµu{X} modify the ‘bare’ local value, reflecting the
influence of the spatial inhomogeneities. They contain the correlation functions (3.4)
and (3.5), Cµµ, Cuu, and Cµu, respectively, as linear integral kernels. The physical origin
of these contributions, therefore, can be traced back to fluctuations in the retardation
factor, to fluctuations in the flow field, and to the cross-correlations between these two
kinds of inhomogeneities, respectively. In the final second-order result, they simply
add up. The centre-of-mass velocity and the two different dispersion coefficients read

ueff
j (t) = uj + δµµ{ueff

j }(t) + δuu{ueff
j }(t) + δµu{ueff

j }(t), (3.23)

Deff
ij (t) = Dij + δµµ{Deff

ij }(t) + δuu{Deff
ij }(t) + δµu{Deff

ij }(t), (3.24)

Dens
ij (t) = Dij + δµµ{Dens

ij }(t) + δuu{Dens
ij }(t) + δµu{Dens

ij }(t). (3.25)

As is established in the literature, on the field scale the various contributions can be
of the same order of magnitude, see e.g. Bellin et al. (1993).

Using the above notation, the existing literature can be classified according to
the various limits and contributions which are investigated. Starting from a slightly
different but equivalent perturbation theory setup, Gelhar & Axness (1983) calculated
the infinite time limit of the corrections due to spatial fluctuations in the flow field.
Their approach yields ensemble quantities only: their main focus lies in the asymp-
totic quantity limt→∞ δuu{Dens

ij }(t) = δuu{Dens
ij }(∞). The approach has been generalized

to include the contributions δµµ{Dens
ij }(∞) and δµu{Dens

ij }(∞) due to retardation fluc-
tuations later on, see e.g. Garabedian, Gelhar & Celia (1988) and Gelhar (1993),
where the various asymptotic results are summarized and the corresponding original
literature is discussed. Dagan (1990, 1991) analysed the infinite time limit of the
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effective and of the ensemble corrections due to spatial fluctuations in the flow field,
δuu{Deff

ij }(∞) and δuu{Dens
ij }(∞), in a Lagrangian framework, neglecting the influence

of the local dispersion (i.e. D0 ≡ 0 in (3.2)); Rajaram & Gelhar (1993) re-derived
the equivalent results in an Eulerian context. For the case of a point-like injection
both approaches find δuu{Dens

ij }(∞) > 0, whereas the corresponding effective quantity

is given by δuu{Deff
ij }(∞) = 0. The result illustrates clearly that, in general, ensemble

and effective quantities indeed are not equivalent. In the case of an initial concen-
tration distribution of a finite size, the same approach yields an effective coefficient
Deff
ij (∞) which depends on the transversal width of the initial plume, whereas the

corresponding asymptotic ensemble quantity is completely independent of the initial
condition. Note, however, that the situation becomes different if the effect of the
local transversal dispersion is included. As is discussed in detail below, owing to
transversal dispersive mixing, one now finds Deff

ij (∞) = Dens
ij (∞) > 0, a result already

suggested qualitatively by Dagan in the conclusions of his 1991 paper. In Metzger,
Kinzelbach & Kinzelbach (1996) the infinite time limit of the effective and of the
ensemble corrections δµµ{Deff

ij }(∞) and δµµ{Dens
ij }(∞), due to spatial fluctuations in the

retardation factor, are investigated by a perturbational treatment similar to the one
given in the previous section.

The asymptotic results describe the transport on the field scale, but give no informa-
tion on the time scales necessary to reach this asymptotic situation. The problem of the
temporal behaviour of the transport parameters was first addressed by Dagan (1984)
and (1988), using a second-order treatment in a Lagrangian framework, neglecting the
influence of the local dispersion (i.e. D0 ≡ 0 in (3.2)). In our notation, this approach
yields δuu{Dens

ij } for vanishing local dispersion. Naff (1990) derived similar results
from a perturbation treatment of the transport equation; Shvidler (1993) investigated
the same quantity using an operator method in a second-order approximation. The
transient behaviour of the ensemble contributions due to spatial fluctuations in the
retardation factor is derived by Chrysikopoulos, Kitanidis & Roberts (1990) for a one-
dimensional model. Bellin et al. (1993) generalize the approach of Dagan (1984) to a
chemically heterogeneous medium and calculate the ensemble quantities δµµ{Dens

ij }(t)
and δµu{Dens

ij }(t). Finally, most recently, Miralles-Wilhelm & Gelhar (1996) gave per-
turbation theory expressions for the ensemble quantities δµµ{Dens

ij }(t), δuu{Dens
ij }(t), and

δµu{Dens
ij }(t) starting from the transport equation.

In the perturbation theory formulation introduced above, all heterogeneity-induced
contributions to the transport coefficients as given in equation (3.23) can be evaluated
systematically and in a unified way for arbitrary times. The technical details of the
calculations, however, are somewhat tedious and not particularly illustrative. For the
present paper, therefore we decided to restrict the discussion to the contributions due
to the random spatial fluctuations in the retardation coefficient, i.e. to δµµ{ueff

j }(t),
δµµ{Deff

ij }(t), and δµµ{Dens
ij }(t). In the simplified model used by Chrysikopoulos et

al. (1990) and Metzger et al. (1996), where only the retardation factor varies locally,
whereas the flow field remains constant, these are the only disorder contributions. This
kind of simplified model might be appropriate to describe the transport of an organic
solute in an aquifer, which is comparatively homogeneous with respect to the hydraulic
conductivity, but exhibits a strongly varying organic carbon content which determines
the retardation factor, see Karickhoff, Brown & Scott (1979). In general, however,
the contributions due to the spatial inhomogeneities in the retardation factor will
hardly ever show up as an isolated effect in a realistic aquifer situation. Nevertheless,
the corresponding simplified model is an extremely useful starting point to introduce
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the basic concepts, mathematical tools, generic results, and interpretations of various
time regimes and properties: the resulting integral expressions are complex enough to
show generic features which remain unchanged in more complicated situations, while
at the same time they are simple enough to serve as an introduction to the techniques
involved.

The δuu and δµu contributions in (3.23) which are ignored in the present paper have
been evaluated by Dentz (1997) and Dentz et al. (1998) using methods analogous to
those described here. Owing to the large number of terms involved, the calculation
is technically less transparent. As a remarkable fact, however, we found that the
qualitative features and interpretations derived in the present paper for the simplified
model remain completely unchanged in the general case.

4. Spatially heterogeneous retardation factor: explicit results for a
point-like initial condition

In this section, we concentrate on contributions due to spatial fluctuations in the
retardation factor. In the corresponding simplified model the only disorder-induced
corrections to the transport coefficients are given by δµµ{ueff

j }(t), δµµ{Deff
ij }(t), and

δµµ
{
Dens
ij

}
(t). So for this model, where u′(x) ≡ 0 in (3.7), one has

ueff
i (t) = ui + δµµ{ueff

i }(t), (4.1)

Deff
ij (t) = Dij + δµµ{Deff

ij }(t), (4.2)

Dens
ij (t) = Dij + δµµ{Dens

ij }(t). (4.3)

In the following, we derive analytical results for these quantities for the case of
a point-like injection of tracer at time t = 0. This initial condition might appear
somewhat artificial since in a realistic field situation the source always has some
finite spatial extent. It is, however, a quite appropriate starting point to isolate and
understand the basic mechanisms governing the temporal behaviour of the transport
model. The extension of the analysis to the case of initial conditions with a finite
spatial extent is given in § 5.

4.1. Results for an isotropic field situation

A point-like injection of tracer is described by a spatial δ-function as source term in
equation (3.7),

ρ(x) = δd(x). (4.4)

To derive explicit results, we have to specify the spatial correlation function. As
discussed in § 3.1, the specific form of the spatial correlation function µ(x)µ(x′) =
Cµµ(x − x′) is to some extent arbitrary. One convenient choice used in the literature
which captures the required general properties in a qualitatively satisfying way is a
Gauss-shaped correlation function,

Cµµ(x) = q0 exp
(−x2/ 2 l20

)
(4.5)

with correlation length l0. In d dimensions this implies a Fourier spectrum C̃µµ(k) =∫
dd x Cµµ(x) exp(ik · x) of the form

C̃µµ(k) = q0

(
2πl20

)d/2
exp

(−k2 l20/2
)
. (4.6)
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From definition (3.3), one easily verifies that the constant q0 is proportional to the
variance σ2

RR of the retardation factor,

q0 =
R2 − R2

R
2

=
σ2
RR

R
2
. (4.7)

It specifies the typical strength of local fluctuations in the retardation factor.
In the case of an isotropic local dispersion tensor, i.e. for

DL = DT ≡ D (4.8)

in (3.9), and a Gauss-shaped correlation function as given above, more or less all of
the integrations in the perturbation theory expressions can be performed explicitly.
For d = 3 (more generally: for odd dimensions) one is in the lucky situation that
the expressions can be reduced to combinations of standard functions. This makes it
possible to study the temporal behaviour of ueff

j (t), Deff
ij (t), and Dens

ij (t) in full detail.
The results are listed in Appendix B for completeness and further reference. Here in
the main text we concentrate on the most important characteristic features of these
solutions.

From the explicit calculations sketched in the Appendix, one identifies two inde-
pendent time scales, τu and τD , given by

τu ≡ l0/u and τD ≡ l20/D (4.9)

which play a crucial role in the discussion of various time regimes below. Both scales
have a direct physical interpretation: in the time given by τu the solute is advectively
transported over the distance of one disorder correlation length l0; in the time τD , on
the other hand, the solute cloud has spread by local dispersion over the same length.
The ratio between these scales is denoted by ε in the following (note that ε is the
inverse of the microscopic Péclet number Pe):

ε ≡ τu

τD
=

D

u l0
=

1

Pe
. (4.10)

In a realistic soil situation, one has ε � 1, see e.g. Roberts, Goltz & Mackay (1986)
or Gelhar (1993), so the two time scales are clearly separated,

τu � τD. (4.11)

Note especially that for times t � τu all ensemble-averaged quantities have only
a restricted formal meaning with respect to properties found in a given aquifer
realization. For times t� τu the solute cloud (which starts from a point-like injection
at t = 0) has travelled a distance much shorter than the correlation length l0 of
the inhomogeneities in the aquifer. It has spread due to the local dispersion, but
for the given times the resulting width is again extremely small compared to l0.
For a travelling particle in a given aquifer the whole situation looks like that of a
homogeneous medium, but of course there are large differences from one realization
of the medium to the other, contributing to the ensemble average of each fluctuating
quantity in this time regime.

4.1.1. Centre-of-mass velocity

As introduced above, the constant pore-scale velocity vector points in the 1-
direction. By symmetry, the corresponding averaged centre-of-mass velocity of the
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solute cloud is also aligned along this direction, i.e. one has

ueff
j (t) = ueff(t) δj1, (4.12)

where ueff(t) is a scalar function. Let us first re-investigate its long-time limit t→ ∞.
The perturbative solution given in Appendix B consists of combinations of error-
functions and Gaussians. Since the asymptotic behaviour of these functions is well
known, cf. Abramowitz & Stegun (1972), it is easy to extract the asymptotic long-time
behaviour from these results. For all spatial dimensions, the effective centre-of-mass
velocity remains unchanged in this limit,

lim
t→∞ u

eff (t) = u = u0 /R (4.13)

in agreement with Bellin et al. (1993) and Metzger, Kinzelbach & Kinzelbach (1996).
It is possible to show that this result actually is exact beyond low-order perturbation
theory. The higher orders of the perturbation expansion vanish in the limit t → ∞,
cf. Attinger (1997).

In passing, we note that for the opposite limit t → 0, one finds the exact result
ueff(t = 0) = u0 R(x)−1 by a simple non-perturbative argument, cf. Attinger (1997),
which is consistent with the expression derived by second-order perturbation theory.
This t→ 0 behaviour agrees with results derived by Kabala & Sposito (1991). Their
approximation (a temporal cumulant expansion), however, breaks down for larger
times, so it does not reflect the cross-over to the asymptotic long time limit given
above. The cross-over behaviour of the centre-of-mass velocity, being proportional

to R−1 for small times, and proportional to
(
R
)−1

for large times, has also been
observed in numerical simulations, see Burr, Sudicky & Naff (1994).

The full perturbation theory result which follows from Appendix B shows that
ueff (t) in d = 3 is a monotonically decreasing function of time. On the time scale τu
it has almost reached its final asymptotic value u, but there are minor corrections
of the order of the local (microscopic) dispersion coefficient D which eventually die
out completely for times t � τu. In a realistic soil situation, where, as mentioned
before, one has ε = D/ u l0 � 1 these corrections are quantitatively negligible. The
spread induced by the local dispersion, however, plays a crucial role to smooth out
sample to sample fluctuations. The local dispersion is the basic physical mechanism
to make sure that the formal ensemble average also acquires a meaning for a given
realization of the medium. This point is discussed in detail in the following subsection
in connection with the dispersion coefficient, where this role becomes apparent in a
more dramatic fashion.

4.1.2. Dispersion

A more interesting behaviour is found for the temporal evolution of the disper-
sion coefficients. In the following discussion, we shall mainly concentrate on the
longitudinal components of the dispersion tensor corresponding to the direction of
advective transport, Deff

11 (t) and Dens
11 (t). The heterogeneities of the medium change the

behaviour of these coefficients in a quantitatively relevant way, whereas the corre-
sponding transversal parts are only weakly influenced by the stochastic fluctuations
of the retardation factor. The lengthy explicit expressions for their complete temporal
behaviour follow from Appendix B. In the long time limit t → ∞, the transversal
dispersion coefficient reduces to the initial pore-scale dispersion coefficient D; all
deviations from this value for shorter times are also of the order of this pore-scale
dispersion coefficient, i.e. microscopically small. Larger temporal variations are found
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for the longitudinal dispersion coefficients Deff
11 (t) and Dens

11 (t). Again the full results
are derived from the explicit perturbative expressions of Appendix B. They consist of
various combinations of error-functions and Gaussians with well known asymptotic
properties given e.g. in Abramowitz & Stegun (1972).

In the asymptotic limit t → ∞, the expression for the three-dimensional (d = 3)
longitudinal dispersion coefficient reads

δµµ{Deff
11 }(∞) = δµµ{Dens

11 }(∞) = (π/2)1/2q0 u l0{1− exp(1/2ε2) erfc ((2ε2)−1/2)}. (4.14)

Again, similarly to the asymptotic results discussed in the previous subsection, these
expressions can be shown to be exact. The higher-order corrections of the perturbation
series vanish in the limit t→∞, Attinger (1997).

The particular form of (4.14) reflects the special choice of a Gaussian for the dis-
order correlation function. Similar results for box-shaped and exponential correlation
functions are given in Metzger et al. (1996, 1998). In the practically most relevant
case of small ε � 1 the common feature of these results is that their leading part is
proportional to ūl0. It can be shown that this is generally true for arbitrary correlation
functions which decay sufficiently fast for large distances, see Attinger (1997).

From the asymptotic long-time results, one might tend to conclude that the con-
ceptual difference between Dens and Deff stressed in § 2 is completely irrelevant for all
practical situations: For dimensions d > 2 the difference between the two quantities
vanishes and it is sufficient to evaluate the mathematically simpler ensemble quantity
Dens. However, as figure 1 shows, this conclusion turns out to be wrong as soon as one
investigates the full temporal behaviour of these quantities. The figure shows a plot
for Deff

11 (t) and Dens
11 (t) as a function of time t for the case d = 3. We plotted the full

perturbation theory results for these quantities as they follow from the expressions
given in Appendix B. The same data are given as a logarithmic plot in figure 1(a),
and as a linear plot in 1(b), since both scalings stress different characteristic features
in the various time regimes.

In the figure, as well as in the explicit results given in Appendix B, the two relevant
time scales τu ≡ l0/ u and τD ≡ l20/D introduced in equation (4.9) are identified.
As discussed there, ε ≡ τu/τD � 1, i.e. the scales are well separated. As figure 1
shows, for times t � τD , i.e. in the limit t → ∞, the difference between Deff and Dens

vanishes as discussed before, but this asymptotic result is reached for extremely large
times only. For smaller times, there is a large difference between the two quantities.
The mathematically simpler ensemble dispersion coefficient Dens which is generally
favoured in the literature, overestimates the preasymptotic dispersion in a typical
realization of the medium considerably. The time scales τu and τD separate three
different time-regimes:

Short-time regime: t� τu
During times smaller than τu, the solute cloud has only reached a region in space

smaller than one disorder correlation length. For the travelling particles in a given
realization of the medium, the world seems homogeneous. But of course there are
large differences from one realization of the medium to the next. In the given time
regime, therefore, the stochastic ensemble approach has no predictive power at all
with respect to the given ‘real’ aquifer. The behaviour of the solute depends on the
local details of this aquifer. So in this sense, Deff as well as Dens have only a formal
meaning. A simple non-perturbative argument shows that for t = 0, the two quantities
coincide, cf. Attinger (1997). Similarly to the behaviour of the centre-of-mass velocity
discussed in the previous subsection, one gets Deff

11 (t = 0) = Dens
11 (t = 0) = D0 R(x)−1,
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Figure 1. Effective and ensemble dispersion coefficients in d = 3 as a function of time for a
point-like initial condition (with ε = τu/τD = 10−3 and q0 = 10−1): (a) logarithmic plot; (b) linear
plot.

consistent with the perturbation theory result to second order in µ. The result for t→ 0
agrees with the corresponding expressions of Bellin et al. (1993). With increasing time,
the two quantities Deff

11 (t) and Dens
11 (t) show a different time evolution. In the short-

time regime, the effective quantity Deff
11 (t) remains of the order of the original small

microscopic initial value, whereas the ensemble quantity Dens
11 (t) for times t of the

order of the advective time scale τu has almost reached the final asymptotic long-time
value.

Intermediate time-regime: τu � t� τD
In the intermediate time regime, the ensemble quantity Dens

11 (t) has more or less
reached its final long-time value Dens

11 (∞) given above. It approaches this macroscopic
value exponentially fast on the τu-scale. A more careful investigation of the closed
results shows that actually during the whole time regime under consideration Dens

11 (t)
still increases slightly, but this increase is of the order of the initial microscopic
dispersion coefficient, so compared to the large value already reached at the beginning
of the regime, these changes are negligible (and more or less invisible in the figure).

The behaviour of the effective quantity Deff
11 (t) is completely different. In the time-

regime under consideration, Deff
11 (t) grows from a (microscopically) small value for

times t ≈ τu to the macroscopic asymptotic value. For times small compared to the
dispersive time scale, t� τD , there is a linear increase in Deff

11 (t). For larger times, the
curve bends to approach the final long-time value. Note that even at times of the
order of the dispersive time scale τD the effective dispersion coefficient still has not
reached its final asymptotic long-time value.

Long-time regime: t� τD
For times t� τD , the effective dispersion coefficient also reaches the final asymptotic

value. The approach to this value is quite slow, given by an inverse power law
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∝ (
t/τD

)−(d−1)/2
which depends on the space dimension d, see § 4.2. To reach a

qualitative interpretation of these results, it is useful to reconsider the most important
differences between the two averaging prescriptions used to define Deff

11 (t) and Dens
11 (t).

We start from a point-like injection of solute at time t = 0 and try to derive predictions
for the dispersion as a function of time representative for a given (‘real’) aquifer. As
discussed in the introduction, this information is encoded in the effective dispersion
coefficient Deff

11 (t) as defined by equation (2.7). This quantity is conceptually different
from the ensemble dispersion coefficient Dens

11 (t), equation (2.8), which includes further
effects resulting from large fluctuations between various realizations of the medium.
This is most clearly illustrated if one considers a (hypothetical) situation where there
is no microscopic dispersion at all. Starting from a point-like injection, the solute
cloud in a given aquifer does not spread at all. Owing to the fluctuations in the
retardation factor, it moves slower or faster, depending on the particular value of
R(x) at the given position in space, but its width remains zero for all times since there
is no physical mechanism to spread out the solute cloud. This is correctly reflected
by the fact that for this situation the effective dispersion remains zero for all times,

Deff
11 (t)

∣∣
D=0
≡ 0. (4.15)

The ensemble dispersion coefficient, on the other hand, even in this hypothetical
case shows a non-trivial time behaviour more or less identical to the one plotted in
figure 1. The explicit result derived from the perturbation theory expression given in
Appendix B reads

Dens
11 (t)

∣∣
D=0

= (π/2)1/2 q0 l0 u erf (2−1/2 t/τu), (4.16)

where erf (z) denotes the error function as defined in Abramowitz & Stegun (1972).
For times t � τu it reaches the macroscopic value Dens

11 (∞) = (π/2)1/2 q0 l0 u. This
behaviour is due to the fact that there are large sample to sample fluctuations in
the centre-of-mass position of the concentration distribution which are included in
the ensemble-averaging procedure used to define Dens

11 . These fluctuations show up
as an artificial, purely advective nonphysical dispersion effect. The whole result is
independent of the spatial dimension – which is no surprise since in the case without
local dispersion the system behaves effectively one-dimensionally in any dimension:
lacking the basic physical mechanism, there is no mass exchange into the transversal
directions. In some sense, the ensemble quantity yields a ‘worst case’ estimate which is
interesting for risk assessment studies, but which does not reflect the typical behaviour
in a given aquifer for real mixing.

The same observation for the situation of a vanishing local dispersion is discussed
in Dagan (1991) for the case of the dispersion contributions due to spatial fluctuations
of the flow field. As already indicated there, the basic mechanism necessary for Deff

11

to reach the macroscopic asymptotic value is the diffusive spreading into directions
transversal to the advective flow. As soon as one considers a more general model
with non-isotropic pore-scale dispersion, i.e. for DL 6= DT in the tensor (3.9), the
relevant dispersive time scale therefore should be set by the transversal part DT of the
microscopic dispersion coefficient. This is confirmed by the investigations presented
in § 4.2.

The explicit solution for the time behaviour as plotted in figure 1 shows that the
relevant time scale to reach the asymptotic situation is given by τD . For times t� τD
the solute cloud has broadened diffusively over a region larger than the typical scale
l0 set by the correlation length of the inhomogeneous medium. In the (hypothetical)
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dispersion-free case discussed above, the time scale τD is infinite, Deff
11 therefore never

reaches a macroscopically large asymptotic value.

4.2. Generalization to anisotropic field situations

In the interpretation put forward in § 4.1.2, we identified the transversal pore-scale
dispersion as the basic mechanism which sets the time scale where the macroscopic
asymptotic value of the dispersion coefficient is reached in a given realization of the
medium. The explicit calculations, however, for technical reasons were restricted to
the case of an isotropic pore-scale dispersion tensor, i.e. DT = DL = D in (3.9). The
different roles of DL and DT , therefore, did not show up explicitly in the results. For
the more general case DT 6= DL the integral expressions collected in Appendix A,
equations (A 9) to (A 11) are no longer reducible to standard functions. But in the
practically most interesting case of small pore-scale dispersion, however, it is actually
possible to extract the leading behaviour for any dimension d for small values of the
pore-scale dispersion coefficients. We assume DL � DT which is the case in realistic
field situations, see e.g. Gelhar (1993). The different micro-dispersion coefficients
generate two instead of one dispersion time scales,

τDL = l20 /DL and τDT = l20 /DT . (4.17)

In analogy to the isotropic situation we assume

τu � τDL � τDT and εT ≡ τu/τDT � εL ≡ τu/τDL � 1. (4.18)

The Fourier-integrations in the explicit perturbation theory expressions of Ap-
pendix A, equations (A 9) to (A 11), can again be performed explicitly yielding (C 1)
to (C 3) in Appendix C. Owing to the Gaussian structure of the disorder correlation
function Cµµ the integrals factorize into a product of one longitudinal and (d − 1)
transversal factors. The approximations are discussed in Appendix C. To leading
order in εL � εT and times t� τu one finds

δµµ{Deff
11 }(t) = (π/2)1/2 q0 u l0 {1 − (1 + 4t/τDT )−(d−1)/2}+ · · · , (4.19)

δµµ{Dens
11 }(t) = (π/2)1/2 q0 u l0 + · · · . (4.20)

The dots indicate subleading corrections: in both quantities, exponential corrections
decay on the τu-scale of the form ∼ exp(−(t/τu)

2/2 (1 + 2t/τDL)) which are irrelevant
in the regime t � τu. In the regime t � τDT � τDL one has corrections of O(εL) and
O(εT ) which are subleading for εT � εL � 1. For times t� τDL and times t� τDT for
the effective dispersion coefficient there are also corrections of the form ∼ εn(t/τDL)m
and ∼ εn(t/τDT )m with exponents m, n > 1 which again are subleading.

Note that the time scale which determines the cross-over from the pre-asymptotic
to the final asymptotic behaviour of the effective dispersion coefficient Deff(t) is indeed
set by the transversal time scale τDT , whereas the longitudinal pore-scale dispersion
coefficient DL only appears in subleading corrections to the given results. This confirms
the interpretation put forward in the previous section. The transversal microscopic
dispersion generates the physical mixing process which ensures that the macroscale
dispersion due to advective fluctuations becomes a true physically realized effect also
in a single realization of the medium.

Finally, let us mention that the results can also be generalized to the case where
the disorder correlations are anisotropic. In a situation with different correlation
lengths in different spatial directions, the disorder correlation function (4.5) more
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generally reads

Cµµ(x) = exp

(
−∑

i

x2
i /2l

2
i

)
, (4.21)

where li is the correlation length in direction i = 1 . . . d, while xi denotes the corre-
sponding component of the position vector x. In a d-dimensional system, in general,
there are now d dispersive time scales which replace the two scales introduced in
equation (4.17). They are given by τDL ≡ l21 /DL (where l1 is the correlation length
in the mean flow direction), and τDTi ≡ l2i / DT with i = 2 . . . d. Again, as long as the
pore-scale dispersion is small, the methods sketched in Appendix C can be applied
to extract the leading behaviour of the longitudinal dispersion coefficient. For times
t� τu, equations (4.19) and (4.20) generalize to

δµµDeff
11 (t) = (π/2)1/2 q0 ū l1

{
1 −

d∏
i=2

(
1 + 4t/τDTi

)−1/2

}
+ · · · , (4.22)

δµµDens
11 (t) = (π/2)1/2 q0 ū l1 + · · · . (4.23)

The explicit results on the transport properties of a non-homogeneously adsorbing
medium derived in the previous sections relied on a special choice for the disorder
correlation function. Choosing a Gaussian for Cµµ(x), we have been able to evaluate
most of the integrals generated by the perturbation expansion explicitly. In general,
however, one expects that the basic features should not depend on this special choice
for the correlation function. Also, numerical simulations, e.g. by Burr et al. (1994),
indicate that the detailed structure of the heterogeneities are relevant only on very
short time scales. It can be demonstrated that the leading behaviour of the dispersion
coefficients in the various time regimes indeed does not depend on the detailed
shape of the disorder correlation function, but only on some simple normalization
properties, cf. Attinger (1997).

5. Spatially heterogeneous retardation factor: results for extended
initial distributions

The results presented in the previous section can be generalized easily to the
more realistic case of an initial concentration distribution of finite extent. For a
d-dimensional situation, it is convenient to choose a Gauss-shaped initial distribution
for the rescaled transport equation (3.7),

ρ(x) =
(2 π)−d/2∏d

i=1 Li
exp

(
−∑

i

x2
i / 2L2

i

)
, (5.1)

where Li denotes the initial width of the tracer concentration in direction i (i = 1 . . . d),
and xi the corresponding component of the position vector x in this direction. Note
that in the limit of vanishing initial widths Li → 0 the finite source reduces to
the point-source discussed before. To illustrate the basic results, we investigate two
different situations. We discuss the case of an isotropically extended distribution, and
the results for the extremely anisotropic case of a line-shaped tracer injection.

5.1. Isotropically extended initial distribution

The initial distribution ρ(x) given by (5.1) becomes isotropic if the widths Li are the
same in all directions, i.e. L1 = · · · = Ld ≡ L. With this initial concentration, the k′-
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Figure 2. Effective and ensemble dispersion coefficients in d = 3 as functions of time for times
larger than τ′u in the case of an isotropic initial condition of width L (with ε = τu/τD = 10−3 and
q0 = 10−1).

integrations in the perturbation theory integrals (A 9) to (A 11) again can be performed
explicitly. The resulting expressions are given in Appendix D, equations (D 1) to (D 3).
The remaining integrations are very similar to those found for the case of a point-like
injection, they yield expressions analogous to those given in (C 1) to (C 3). As the
explicit results show, the temporal behaviour of the transport coefficients in this case
is governed by four instead of two time scales. In addition to the two scales τu = l0/ u
and τD = l20/D relevant in the case of a point-like injection, one encounters two new
scales given by

τ′u ≡ τu
(

1 + 2
L2

l20

)1/2

and τ′D ≡ τD
(

1 + 2
L2

l20

)
. (5.2)

For realistically small values of ε = D/ u l0, the time scales are ordered according to

τu 6 τ
′
u � τD 6 τ

′
D. (5.3)

The characteristic temporal behaviour found for the ensemble and the effective
dispersion coefficients Dens

11 (t) and Deff
11 (t) are plotted in figure 2 for different sizes of

the initial plume. The scales again define different time regimes. Using the arguments
of Appendix C, the leading temporal behaviour in these regimes can be derived
explicitly for the case of a (realistically) small local dispersion. Not very surprisingly,
one finds that the ensemble dispersion coefficient Dens

11 (t) depends only very weakly
on the size of the initial plume. As discussed above, the leading behaviour of Dens

11 (t)
in the case of a point-like injection is due to the centre-of-mass fluctuations of
the evolving plume from sample to sample. The ensemble-averaged concentration
distribution includes all these fluctuations and, owing to the translation invariance of
the statistical ensemble, no longer depends on the position of the initial injection. As
a consequence, any normalized superposition of such solutions again yield the same
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distribution as before. The solution for the case of an extended initial distribution is
such a superposition of point-source solutions, and is therefore independent of the
width of the initial source. From this argument one might conclude that the ensemble
dispersion coefficient also should show no dependence at all on the finite initial
width of the plume – a result which is indeed true e.g. for the case of the dispersion
contributions due to fluctuation of the flow field investigated in Dentz (1997) and
Dentz et al. (1998). For the problem under consideration here, the situation is slightly
more subtle since the ensemble dispersion coefficient Dens

11 (t) is not derived from the
ensemble-averaged concentration, but from the average over the normalized density
defined by equation (2.5). The normalizing denominator also contributes to the
ensemble dispersion coefficient, but only in an irrelevant way. In figure 2, therefore,
there is only one single curve for the ensemble quantity, independent of the width L of
the initial distribution. As our explicit results show, it yields corrections of the order
of the (small) local dispersion coefficient which are completely negligible compared
to the leading behaviour which is determined by (D 1).

In contrast to this result for the ensemble quantity, the transient temporal behaviour
of the physically more relevant effective quantity Deff

11 (t) depends strongly on the initial
plume size. One has to distinguish between the various time regimes set by the time
scales given above. As before, the behaviour in the short-time regime t� τu is of little
interest since the cloud has explored only a region in space smaller than the disorder
correlation length. For larger times, one now has three different regimes.

First intermediate time regime: τu � t� τ′u
The effective dispersion coefficient Deff

11 (t) increases quickly, reaching a plateau value
smaller than the final asymptotic limit. The difference between this plateau value and
infinite time coefficient, however, decreases with increasing initial width of the plume.
In the limiting case of an extremely large initial extent of the plume (i.e. l0 � L→∞)
the plateau value approaches the infinite time value, in this case the effective dispersion
coefficient has already converged to the ensemble behaviour given by Dens

11 (t) within
the given time-regime.

Second intermediate time regime: τ′u � t� τ′D
In this regime, the effective dispersion coefficient Deff

11 (t) remains almost constant
at the plateau value. There is a weak linear time dependence comparable to the
linear regime found in the case of a point source. Note that the time scale τD
which was the most relevant one in the case of a point-like injection lies within the
given regime. It has, however, completely lost its leading role. It is of relevance only
for small subleading modifications which are of the order of the (negligibly small)
local dispersion coefficient. If one neglects the local dispersion coefficient from the
beginning, starting from a model with D ≡ 0, the time scales τD and τ′D become
infinite. In this case the intermediate time regime extends to infinite times and also
determines the long-time asymptotics of the quantities. In this case, the asymptotic
limit of the effective dispersion coefficient is given by the aforementioned plateau
value which depends on the size of the initial plume and remains smaller than the
corresponding ensemble value, a fact discussed already by Dagan (1991) in the context
of his Lagrangian analysis of the random flow problem without local dispersion. For
finite local dispersion coefficients, however, the system enters a new long-time regime
for times larger than the time scale τ′D which now is finite. (In passing, let us note that
a recent paper by Fiori (1998) which tries to extend Dagan’s analysis of the infinite-
time asymptotics to include the effects of a finite local dispersion actually treats the
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dispersion corrections to the plateau value of the second intermediate time-regime.
Owing to technical restrictions of his method, the infinite-time limit misses the final
crossover to the true long-time regime, see Dentz & Kinzelbach (1998).)

Long-time regime: t� τ′D
In the final long-time regime, the effective dispersion coefficient Deff

11 (t) becomes
almost independent of the initial plume size. Hence, we end up with the same
preasymptotic power-law behaviour found in the case of the point-like injection for
t� τD , cf. § 4. Note, however, that this statement has a somewhat restricted meaning:
the time scale τ′D which defines this regime increases with increasing extent of the
initial distribution. So in the limit of an extremely large initial source (i.e. L → ∞)
this regime becomes unreachable and Deff

11 (t) shows a temporal behaviour identical to
Dens

11 (t).

Using the methods discussed in Appendix C the results follow explicitly from the
perturbation theory expressions. In the (realistic) case of a small ε = D/u l0 � 1 and
times t� τ′u, the leading behaviour of the ensemble dispersion coefficient is given by
δµµ{Dens

11 } (t) = (π/2)1/2 q0 u l0 + · · ·, a result identical to that in the case of a point-like
injection. The result for the corresponding effective quantity in the same time regime
reads

δµµ{Deff
11 }(t) = (π/2)1/2 q0 u l0

{
1 − 1

(1 + 2L2/l20)(d−1)/2 (1 + 4t/τ′D)(d−1)/2

}
+ · · · . (5.4)

The expression reduces to the one found for the point source in the limiting case
L → 0, cf. equation (4.19). As mentioned above, it reaches an intermediate plateau
value for times τ′u � t � τ′D . From the previous equation, this plateau value can
be read off as (π/2)1/2 q0 u l0 {1 − (1 + 2L2/l20)−(d−1)/2}. It vanishes in the limit of a
point-like tracer injection L → 0, and approaches δµµ{Dens}(∞) = (π/2)1/2 q0 u l0 in
the case of an infinitely extended initial distribution L→∞.

5.2. Anisotropical initial condition: line source

The distribution of the source in realistic field situations is usually found to be
anisotropic, see e.g. Burr et al. (1994). Typically, its width is small compared to
the soil correlation length in the horizontal direction, but extends over quite some
correlation lengths in the vertical direction. From a slightly simplified point of view,
it is given by a vertically aligned, line-shaped source distribution. Starting from the
general distribution (5.1) (with d = 3), this corresponds to the anisotropic limit
L1 = L2 → 0, while keeping the length in the vertical direction, L3 > 0, fixed. The
distribution reduces to

ρ(x) = δ(x1) δ(x2) (2 π)−1/2 exp(−x2
3/2L

2
3). (5.5)

In this case the two advective time scales τu and τ′u introduced above coincide, so the
temporal behaviour of the transport properties is characterized by the remaining three
time scales, τu, τD , and τ′D = τD(1 + 2L2

3/l
2
0). The corresponding explicit perturbation

theory results are plotted in figure 3 for the time regime t > τu. For the reasons
discussed in the previous section, the ensemble coefficient is almost independent
of the initial length L. So figure 3, too, shows only one single curve for Dens.
The corresponding effective dispersion coefficient, however, does depend on L. Its
properties follow from the explicit expressions given in Appendix D. For the leading
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Figure 3. Effective and ensemble dispersion coefficients in d = 3 as functions of time for times
larger than τu = τ′u in the case of a line-shaped initial condition of length L3, aligned perpendicular
to the mean flow direction (with ε = τu/τD = 10−3 and q0 = 10−1).

behaviour for t� τu one finds

δµµ{Deff
11 }(t) = (π/2)1/2 q0 u l0

{
1− 1

(1 + 2L2
3/l

2
0)1/2(1 + 4t/τD)1/2(1 + 4t/τ′D)1/2

}
.

(5.6)
Again the most characteristic difference to the case of a point source discussed in
§ 4 is the plateau value of Deff

11 (t) found also in the isotropic case of the previous
section. For the line source, this plateau dominates the time regime τu � t � τD .
The corresponding plateau value is given by (π/2)1/2 q0 u l0 {1 − (1 + 2L2

3/l
2
0)−1/2}.

It is remarkedly smaller than the value found in the isotropic situation, so for the
given (practically more relevant) anisotropic initial condition, the difference between
effective and ensemble quantities at finite times is much more pronounced than in the
isotropic case. For times t � τD again the asymptotic long-time limit is approached
algebraically. In principle, in cases where the two dispersive scales τD and τ′D are well
separated (i.e. for L3 � l0) one may distinguish two different regimes τD � t � τ′D
and τ′D � t with leading powers t−1/2 and t−1, respectively, in the three-dimensional
situation. Note, however, that in this case also the plateau value is already close to
the final asymptotic dispersion coefficient, so these two regimes are hardly visible.

6. Summary
A porous medium with a retardation coefficient varying stochastically in space

was taken as a model for investigating the temporal behaviour of effective transport
properties. For a point-like injection of solute at time t = 0 the explicit pertur-
bative solutions for the time evolution of the first and second moments of the
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solute cloud were derived up to second order. From these, two fundamentally dif-
ferent quantities were defined: the effective dispersion coefficient Deff , representing
the physically realized (and observable) dispersion in a typical realization of the
aquifer and the mathematically simpler ensemble dispersion coefficient Dens, char-
acterizing the fluctuations from realization to realization within the ensemble. The
temporal behaviour of the two quantities is remarkably different for the point source.
The ensemble quantity Dens(t) reaches its final asymptotic value on time scale τu
with a fast exponential approach to this asymptotic value. The effective quantity
Deff(t), which gives a more faithful representation of the real mixing behaviour
characteristic of a given typical aquifer realization, reaches its long-time asymp-
totic value only on the much larger time scale τD � τu. The approach is slow
and for times t � τD it follows an inverse power law, ∼ (t/τD)−(d−1)/2. In a real
aquifer situation where the system is finite, it may well happen that this limit is
not reached within the given system boundaries. For times t � τD , the ensemble
dispersion coefficient Dens(t) usually discussed in the literature, considerably overes-
timates the true pre-asymptotic dispersion found in one aquifer realization. This has
also been observed in numerical simulations on single realizations of a stochastic
medium.

The method presented here allows the systematic calculation of both effective and
ensemble quantities. By choosing a Gaussian disorder correlation function we have
been able to evaluate the perturbation expressions explicitly without any further
approximations. In the practically most relevant case ε = D/ ul0 � 1, the technical
effort can be reduced considerably by further approximations. In this case it is
also possible to derive the leading time behaviour of the quantities of interest for
more general situations such as anisotropic local dispersion coefficients, anisotropic
heterogeneity, and an extended source. The generalization of the results to a source
of finite size shows that with increasing size the differences between Deff(t) and Dens(t)
vanish even at small times on the order of τu. This is intuitively clear, as an extended
source samples the aquifer faster and is therefore equivalent to an ensemble of point
sources. Consequently, the transport parameters for a typical single realization should,
with growing size of the source, approach the ensemble quantities. This approach is
the faster the larger the source is compared to the correlation length of the medium.
The differences will become neglibible if in at least one coordinate direction the
source is larger than 10 times the correlation length. In real aquifers the extent of
a source in the vertical direction is most likely to be on the order of or larger than
the corresponding correlation length, while in the horizontal directions a tracer or
pollutant injection can usually be considered point-like. Yet, in aquifers containing
multiple scales the point source approximation even in the vertical direction may still
be of considerable interest.

The method can be extended straightforwardly to take into account higher-order
corrections of the perturbation theory and to treat models which include other random
processes. As the calculations by Dentz (1997) and Dentz et al. (1998) show, the
conclusions and interpretations discussed here remain qualitatively unchanged in the
more general model which allows for fluctuations both in the hydraulic conductivities
and the retardation factor.

Dedicated to Heinz Horner on the occasion of his 60th birthday. It is a pleasure
to thank Heinz Horner, Dirk Metzger, Insa Neuweiler and Rolf Reichle for many
helpful discussions.
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Appendix A. Spatial retardation fluctuations: perturbation theory
expressions

From equations (3.17) to (3.19) and the perturbation series (3.22), one gets the fol-
lowing expressions for the disorder-induced corrections due to the spatial fluctuations
of the retardation factor:

δµµ{ueff
j }(t) = (−i∂kj ) ∂t {I1(k, t)− 1

2
I2(k, k, t)}

∣∣
k=0
, (A 1)

δµµ{Deff
ij }(t) = (−i∂ki) (−i∂kj ) ∂t{I1(k, t)− 1

2
I2(k, k, t)}

∣∣
k=0
, (A 2)

δµµ{Dens
ij }(t) = (−i∂ki) (−i∂kj ) ∂t{I1(k, t)− I2(0, k, t)}

∣∣
k=0
, (A 3)

with functions I1(k, t) and I2(k1, k2, t) given by

I1(k, t) ≡ g̃0(k, t)
−1

∫ +∞

−∞
dt′ dt′′

∫
k′
C̃µµ(k′) g̃0(k, t− t′)

×∂t′ g̃0(k − k′, t′ − t′′) ∂t′′ g̃0(k, t
′′), (A 4)

I2(k1, k2, t) ≡ g̃0(k1, t)
−1 ρ̃(k1)

−1 g̃0(k2, t)
−1 ρ̃(k2)

−1

×
∫ +∞

−∞
dt′ dt′′

∫
k′
C̃µµ(k′) g̃0(k1, t− t′) ∂t′ g̃0(k1 − k′, t′)

×ρ̃(k1 − k′) g̃0(k2, t− t′′) ∂t′′ g̃0(k2 + k′, t′′) ρ̃(k2 + k′), (A 5)

where C̃µµ(k) is the Fourier transform of the disorder correlation function Cµµ(x)

given in (3.4), C̃µµ(k) =
∫

dd x Cµµ(x) exp (ik · x). Analogously, ρ̃(k) is the Fourier
transform of the initial tracer concentration c(x, t = 0) = ρ(x).

By partial integrations with respect to t′ and t′′ it is possible to replace the two
internal time derivatives in (A 4) and (A 5) by derivatives with respect to the external
time variable t. Regrouping the equations for ueff

µ (t), Deff
ij (t), and Dens

ij (t) in a way more
appropriate for the following calculations, we get

δµµ{ueff
j }(t) = 2 u ∂t[B1(0, t)− 1

2
B2(0, t)]δj1 + 1

2
δj1 (−i∂k1

) ∂2
t B1(k, t)

∣∣
k=0
, (A 6)

δµµ{Deff
ij }(t) = u2 [B1(0, t)− B2(0, t)] δi1 δj1

+2{Dij + u δi1 (−i∂kj )} ∂t[B1(k, t)− 1
2
B2(k, t)]k=0

+ 1
2
(−i∂ki) (−i∂kj ) ∂

2
t B1(k, t)

∣∣
k=0
, (A 7)

δµµ{Dens
ij }(t) = u2 B1(0, t) δi1 δj1

+2{Dij + u δi1 (−i∂kj )} ∂t [B1(k, t)− 1
2
B3(k, t)]k=0

+ 1
2

((−i∂ki) (−i∂kj ) ∂
2
t B1(k, t)

∣∣
k=0
, (A 8)

with functions B1(k, t), B2(k, t), and B3(k, t) given by

B1(k, t) = q0

∫ t

0

dt′
∫
k′
C̃µµ(k′) exp{−(i u n(k) · k′ + k′ · D · k′)t′}, (A 9)

B2(k, t) = q0 ρ̃(k)−2

∫ t

0

dt′
∫
k′
C̃µµ(k′) ρ̃(k − k′) ρ̃(k + k′)

× exp{−i u n(k) · k′ (t− t′)− k′ · D · k′ (t+ t′)}, (A 10)
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B3(k, t) = q0 ρ̃(k)−1

∫ t

0

dt′
∫
k′
C̃µµ(k′) ρ̃(k − k′) ρ̃(k′).

× exp{−i u k′ · (e1 t− n(k) t′) − k′ · D · k′ (t+ t′)}, (A 11)

where e1 is the unit vector in the direction of the advective flow field u (i.e. in the
1-direction), and where we introduced the auxiliary vector

n(k) ≡ e1 +
2D

u
ik. (A 12)

Appendix B. Point-like injection: explicit results
In the case of a point-like injection the initial concentration ρ(x) is ρ(x) = δd(x)

and its Fourier transform ρ(k) = 1. For the Gaussian disorder correlation function
given in (4.6), the k′-integrations in (A 9) to (A 11) can be performed explicitly. In the
case of an isotropic local dispersion tensor, i.e. for DL = DT ≡ D in equation (3.9),
one ends up with

B1(k, t) = q0

∫ t

0

dt′ (1 + 2t′/τD)−d/2 exp(
−(n(k) t′/τu)2

2 (1 + 2t′/τD)
), (B 1)

B2(k, t) = q0 (1 + 4t/τD)−d/2
∫ t

0

dt′ (1− 2t′/τD
1 + 4t/τD

)−d/2

× exp

(
−(n(k) t′/τu )2

2 (1 + 4t/τD)

(
1− 2t′/τD

1 + 4t/τD

)−1
)
, (B 2)

B3(k, t) = q0

(
1 + 4t/τD

)−d/2 ∫ t

0

dt′
(

1− 2t′/τD
1 + 4t/τD

)−d/2
× exp

(
−(n(k) t′/τu − 2i l0 k t/τD)2

2 (1 + 4t/τD)

(
1− 2t′/τD

1 + 4t/τD

)−1
)
, (B 3)

with time scales τu = l0/ u and τD = l20/D.
For d = 1 and d = 3, the remaining integrations can be performed explicitly, using

extensively the formulae given in Gradshteyn & Ryzhik (1980) and Abramowitz &
Stegun (1972). We find the following expressions:

B1(k, t, d = 3) =
π1/2

2

τD

ν(k)
{erf(ν(k) (t/τD) T2(t)

−1/2)

− exp(ν(k)2)[erf(ν(k))− erf(ν(k)T1(t)T2(t)
−1/2)]},

B1(k, t, d = 1) =
π1/2

2

τD

ν(k)
{erf(ν(k) (t/τD) T2(t)

−1/2)

+ exp(ν(k)2)[erf(ν(k))− erf(ν(k)T1(t)T2(t)
−1/2)]},

B2(k, t, d = 3) =
π1/2

2

τD

ν(k)
T4(t)

−1{erf(ν(k) (t/τD) T2(t)
−1/2)

− exp(ν(k)2 T4(t))[erf(ν(k)T4(t)
1/2)− erf(ν(k)T3(t)T2(t)

−1/2)]},
B2(k, t, d = 1) =

π1/2

2

τD

ν(k)
{erf(ν(k) (t/τD) T2(t)

−1/2)

+ exp(ν(k)2 T4(t))[erf(ν(k)T4(t)
1/2)− erf(ν(k)T3(t)T2(t)

−1/2)]},
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B3(k, t, d = 3) =
π1/2

2

τD

ν̃(k)
exp( 1

2
N (k) · Ñ (k))

×{exp( 1
2
ν(k)ν̃(k)) erf( 1

2
ν(k)T4(t)

1/2 + 1
2
ν̃(k)T4(t)

−1/2)

− exp(− 1
2
ν(k)ν̃(k)) erf( 1

2
ν(k)T4(t)

1/2 − 1
2
ν̃(k)T4(t)

−1/2)

− exp( 1
2
ν(k)ν̃(k)) erf( 1

2
ν(k)T2(t)

1/2 + 1
2
ν̃(k)T2(t)

−1/2)

+ exp(− 1
2
ν(k)ν̃(k)) erf( 1

2
ν(k)T2(t)

1/2 − 1
2
ν̃(k)T2(t)

−1/2)},
B3(k, t, d = 1) =

π1/2

2

τD

ν(k)
{erf(2−1/2 (t/τu) T2(t)

−1/2)

+erf(21/2 (t/τu)T4(t)
−1/2 ε l0 ik)

+ exp( 1
2
ν(k)ν̃(k)) erf( 1

2
ν(k)T4(t)

1/2 + 1
2
ν̃(k)T4(t)

−1/2)

− exp( 1
2
ν(k)ν̃(k)) erf( 1

2
ν(k)T2(t)

1/2 + 1
2
ν̃(k)T2(t)

−1/2)},
with

N (k) ≡ n(k) (2 ε2)−1/2 = (e1 + 2ik l0 ε) (2 ε2)−1/2,

Ñ (k) ≡ (n(k) + (2 t/τD) (n(k) + e1)) (2 ε2)−1/2 = N (k) + (4 t/τD)N (k/2),

ν(k) ≡ (N 2(k))1/2, ν̃(k) ≡ (Ñ
2
(k))1/2,

Tm(t) ≡ 1 + m t/τD with m = 1, 2, 3, 4.

Inserting these lengthy expressions into (A 6) to (A 8) eventually yields explicit results
for ueff(t), Deff(t), and Dens(t). To evaluate the various derivatives with respect to k
given in these formulae is an elementary but tedious task. One ends up with a large
number of different additive contributions. It is useful to perform this last step using
a computer-algebra program like maple or mathematica.

Appendix C. Point-like injection: results for a small pore-scale
dispersion

In the case εT � εL � 1, it is possible to extract the leading temporal behaviour of
all integral expressions involved for arbitrary space dimensions d. We investigate
the regime t � τu. In B1, the main contribution to the integral comes from the
region of integration where the integration variable t′ is small. For increasing t′ > τu,
the integrand vanishes exponentially fast. If we rewrite the integration according to∫ t

0
=
∫ ∞

0
− ∫ ∞

t
, the time-dependent part

∫ ∞
t

also vanishes exponentially fast for t� τu,
leading to a negligibly small correction in the time regime under consideration. The
time-independent part

∫ ∞
0

can be evaluated if one expands with respect to DL and
DT , i.e. with respect to the dimensionless quantities εL and εT . To leading order, for
small values of εL and εT one ends up with

B1(k, t) = q0

π1/2

2

τu

(n(k)2)
1/2
{1 + · · ·} (C 1)

where the dots denote corrections of O(εL) and O(εT ). In B2 and B3 we expand the
integrands with respect to 2(t′/τDL)/(1 + 4t/τDL) and 2(t′/τDT )/(1 + 4t/τDT ) which is
smaller than 1 for all t′. In the corresponding leading expression we again replace
the upper integration boundary by ∞. A more careful investigation of the neglected
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correction terms reveals that the approximation loses only negligibly small exponential
corrections whereas the expansion performed first generates corrections which in the
time regime t � τDL � τDT are of higher order in εL or εT , and which are of
higher orders in (t/τDL)

−1 or (t/τDT )−1 for t� τDT � τDL . The leading behaviour for
εT � εL � 1 is given by

B2(k, t) = q0(π/2)1/2 τu

(n(k) 2)
1/2

(1 + 4t/τDT )−(d−1)/2 {1 + · · ·}, (C 2)

B3(k, t) = q0(π/2)1/2 τu

(n(k) 2)
1/2

(1 + 4t/τDT )−(d−1)/2 erfc(−ik · e1

21/2 l0 t/τDL
(1 + 4t/τDL)

1/2
)

× exp{2 (l0 t/τDL)
2

1 + 4t/τDL
(k2 − (k · e1)

2)}{1 + · · ·}. (C 3)

With these results, the expressions for Deff
11 and Dens

11 , equations (A 7) and (A 8), reduce
to those given in (4.19) and (4.20) for t� τu and εT = DT/ u l0 � εL = DL/ u l0 � 1.

Appendix D. Finite source: explicit results
In the case of a finite source ρ(x) given by a Gaussian it is again possible to perform

the k′ integration in (A 9) to (A 11) explicitly. For a Gaussian disorder correlation
function given by (4.6) and an isotropic local dispersion tensor, i.e. for DL = DT ≡ D
in equation (3.9), one ends up with

B1(k, t) = q0

∫ t

0

dt′
(
1 + 2t′/τD

)−d/2
exp

(−(n(k) t′/τu)2

2 (1 + 2t′/τD)

)
, (D 1)

B2(k, t) = q0

(
l0

L∗

)d (
1 + 4t/τ′D

)−d/2 ∫ t

0

dt′
(

1− 2t′/τ′D
1 + 4t/τ′D

)−d/2

× exp

(
−(n(k) t′/τ′u )2

2 (1 + 4t/τ′D)

(
1− 2t′/τ′D

1 + 4t/τ′D

)−1
)
, (D 2)

B3(k, t) = q0

(
l0

L∗

)d (
1 + 4t/τ′D

)−d/2 ∫ t

0

dt′
(

1− 2t′/τ′D
1 + 4t/τ′D

)−d/2

× exp

(
−(n(k) t′/τ′u − 2i l0 k t/τ

′
D)2

2 (1 + 4t/τ′D)

(
1− 2t′/τ′D

1 + 4t/τ′D

)−1
)
, (D 3)

where L∗ is defined by L∗ ≡ l0 (1 + 2L2/l20)1/2. The integral expressions depend
now on the old time scales τu = l0/ u and τD = l20/D, and on the new scales
τ′u ≡ τu (1 + 2L2/l20)1/2 and τ′D ≡ τD (1 + 2L2/l20). The integral (D 1) which gives the
ensemble dispersion coefficient Dens

11 (t) to leading order for times large compared to
the advective time scale, t� τu, is completely independent of the initial condition. The
finite source modifies only the integral expressions (D 2) and (D 3) which determine
the behaviour of the effective dispersion coefficient Deff

11 (t). The integrals (D 2) and
(D 3), however, follow from the corresponding expressions (B 2) and (B 3) for the
point source by a simple transformation of the time scales involved: τu is replaced by
τ′u and τD by τ′D . Additionally, the integrals are multiplied by a factor (1 + 2L2/l20)−d/2.
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The further treatment is straightforward. We use the same approximations as given
in Appendix C to end up with the results presented in § 5.

This discussion can be generalized to the case of an anisotropic initial condition
with L1 6= L2 6= L3 in equation (5.1). In the following, we give the explicit results for
B1(k, t, d = 3) and B2(k, t, d = 3) for this more general case since this allows us also
to treat the line source discussed in § 5.2. Starting from the general anisotropic initial
condition, one has six instead of four time scales, given by: τu, τ

′
u ≡ τu(1+2L2

1/l
2
0)1/2, τD ,

τ′D1 ≡ τD (1 + 2L2
1/l

2
0), τ′D2 ≡ τD (1 + 2L2

2/l
2
0), and τ′D3 ≡ τD(1 + 2L2

3/l
2
0). The calculation

sketched above yields the following expressions for B1 and B2:

B1(k, t, d = 3) =
π1/2

2

τD

ν(k)
{erf(ν(k) (t/τD) T2(t)

−1/2)

− exp(ν(k)2)[erf(ν(k))− erf(ν(k)T1(t)T2(t)
−1/2)]},

B2(k, t, d = 3) =
π1/2

2

τ′D1

ν1(k)
θ2

4(t)−1/2 θ3
4(t)−1/2 {erf(ν1(k) (t/τ′D1) θ

1
2(t)−1/2)

− exp{ν1(k)2 θ1
4(t)}[erf(ν1(k) θ1

4(t)1/2)− erf(ν1(k) θ1
3(t) θ1

2(t)−1/2)]},
with

N 1(k) ≡ (e1 + 2ik l0 ε) (2 (D/ u l1)
2)−1/2,

ν1(k) ≡ (N 2
1(k))1/2,

θjm(t) ≡ 1 + m t/τ′Dj with m = 1, 2, 3, 4 and j = 1, 2, 3

and Tm(t), ν(k) as defined in Appendix B.
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Thesis, University of Heidelberg.

Dentz, M., Attinger, S., Kinzelbach, H. & Kinzelbach, W. 1998 Temporal behaviour of a solute
cloud in a heterogeneous porous medium. Water Resour. Res. (submitted).

Dentz, M. & Kinzelbach, H. 1998 Technical note on the paper ‘On the influence of pore-scale
dispersion in nonergodic transport in heterogeneous formations’ by A. Fiori. Transport in
Porous Media (to appear).

Fiori, A. 1996 Finite Pecelt extensions of Dagan’s solutions to transport in anisotropic heterogeneous
formations. Water Resour. Res. 32, 193–198.

Fiori, A. 1998 On the influence of the pore-scale dispersion in nonergodic transport in heterogeneous
formations. Transport in Porous Media 30, 57–73.

Garabedian, S. P., Gelhar, L. W. & Celia, M. A. 1988 Large scale dispersivity transport in aquifers:
Field experiments and reactive transport theory. Rep. 315. Parsons Lab., MIT Cambridge, USA.

Gelhar, L. W. 1993 Stochastic Subsurface Hydrology. Prentice Hall.

Gelhar, L. W. & Axness, C. L. 1983 Three-dimensional analysis of macrodispersion in aquifers.
Water Resour. Res. 19, 161–180.

Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series, and Products. Academic.

Haus, J. W. & Kehr, K. W. 1987 Diffusion in regular and disordered lattices. Phys. Rep. 150,
263–406.

Kabala, Z. J. & Sposito, G. 1991 Stochastic model of reactive solute transport with time varying
velocity in a heterogeneous aquifer. Water Resour. Res. 27, 341–350.

Kapoor, V. & Kitanidis, P. K. 1996 Concentration fluctuations and dilution in two-
dimensionally periodic heterogeneous porous media. Transport in Porous Media 21,
91–119.

Karickhoff, S. W., Brown, D. S. & Scott, T. A. 1979 Sorption of hydrophobic pollutants on
natural sediments. Water Resour. Res. 13, 241–248.

Kitanidis, P. K. 1988 Prediction by the method of moments of transport in a heterogeneous
formation. J. Hydrology 102, 453–473.

Kitanidis, P. K. 1992 Analysis of macrodispersion through volume averaging: Moment equations.
Stochastic Hydrology and Hydraulics 6, 5–25.

Metzger, D., Kinzelbach, H. & Kinzelbach, W. 1996 Effective dispersion of a solute cloud in a
chemically heterogeneous porous medium: comparison of two ensemble-averaging procedures.
Water Resour. Res. 32, 3311–3319.

Metzger, D., Kinzelbach, H. & Kinzelbach, W. 1998 Asymptotic transport parameters in a
heterogeneous porous medium. Stochastic Hydrology and Hydraulics (to appear).

Miralles-Wilhelm, F. & Gelhar, L. W. 1996 Stochastic analysis of sorption macrokinetics in
heterogeneous aquifers. Water Resour. Res. 32, 1541–1549.

Naff, R. L. 1990 On the nature of the dispersive flux in saturated heterogeneous porous media.
Water Resour. Res. 26, 1013–1026.

Rajaram, H. & Gelhar, L. W. 1993 Plume scale-dependent dispersion in heterogeneous aquifers.
Water Resour. Res. 29, 3249–3276.

Roberts, P. V., Goltz, M. N. & Mackay, D. M. 1986 A natural gradient experiment on solute
transport in a sand aquifer, 3. retardation estimates and mass balances for organic solutes.
Water Resour. Res. 22, 2047–2058.

Shvidler, M. I. 1993 Correlation model of transport in random fields. Water Resour. Res. 29,
3189–3199.


